Hinreichende Bedingung Extrempunkte

June 30, 2024, 10:45 am

(f(x) = x^4) Es handelt sich ja nur um eine hinreichende Bedingung, was nun mal nicht den Umkehrschluss zulässt "Die zweite Ableitung muss ungleich 0 sein, damit eine Extremstelle vorliegt". Der Fehler liegt hier: wenn die zweite Ableitung Null ist, befindet sich in der ersten Ableitung ein Extremum Das ist nicht zwingend. Man muss dann die 3. Ableitung bzw Vorzeichenwechsel-Test ranziehen, um das zu überprüfen. Es muss sich nicht um ein Extremum handeln, sondern kann sich auch um eine Wendestelle handeln. Bei x^4 sieht man das wieder gut: 4x^3 ist die erste Ableitung und sie hat keine Extremstellen, nur einen Wendepunkt an besagter Stelle. Obwohl die 2. Ableitung an dieser Stelle 0 ist. Aber abgesehen von diesem Sonderfall, dass die 1. und 2. Lokale Extremstellen. Ableitung 0 sind, ist das richtig und du hast denke ich soweit alles richtig verstanden. Anzeige 24. 2011, 16:01 Ja, dann habe ich das richtig verstanden. Es ging in dem Auszug schließlich um die hinreichende Bedingung. 24. 2011, 16:09 ich sehe das so: notwendige Bedingung (nicht umkehrbar) notwendige und hinreichende Bedingung (umkehrbar) 24.

  1. Lokale Extrempunkte: Notwendige und hinreichende Bedingung - Herr Fuchs
  2. Hinreichende Bedingung für Extrempunkte mit der zweiten Ableitung - Herr Fuchs
  3. Lokale Extremstellen

Lokale Extrempunkte: Notwendige Und Hinreichende Bedingung - Herr Fuchs

Mathematik 5. Klasse ‐ Abitur Vor allem bei der Kurvendiskussion, aber auch in anderen mathematischen Bereichen unterscheidet man zwischen notwendigen und hinreichenden Bedingungen (oder Kriterien) für einen Sachverhalt oder das Eintreten eines Ereignisses. Letztlich handelt es sich um ein rein logisches Problem. Eine notwendige Bedingung A muss eintreten, damit das Ereignis B geschieht, es ist aber nicht gesagt, dass das dann auch tatsächlich so ist. Beispie lsweise muss ein Schüler in die Schule gehen, um dem Unterricht zu folgen. Er könnte aber auch hingehen und aus dem Fenster sehen … Formal kann man sagen: "ohne A kein B " bzw. "wenn nicht A, dann auch nicht B " oder auch "wenn B, dann A ", d. h. " \(B \Rightarrow A\) ". Hinreichende Bedingung für Extrempunkte mit der zweiten Ableitung - Herr Fuchs. Eine hinreichende Bedingung führt zwangsläufig dazu, dass das Ereignis eintritt, aber es könnte auch auf anderem Wege dazu kommen. Beispielsweise wird man nass, wenn man sich in den Regen stellt, man könnte aber auch Duschen, schwimmen gehen usw. Formal kann man das so ausdrücken: "wenn A, dann B " bzw. " \(A \Rightarrow B\) ".

Hinreichende Bedingung Für Extrempunkte Mit Der Zweiten Ableitung - Herr Fuchs

Ist an diesen Stellen die erste oder zweite hinreichende Bedingung erfüllt, so liegen dort Extremstellen vor, wenn nicht, darf man nicht annehmen, dass dort keine Extremstellen vorliegen. 6. Beispiel Aufgabe: Gegeben sei \$f(x)=x^{3} - 3 x^{2} + 4\$. Bestimme die Extrempunkte dieser Funktion a) mit der ersten hinreichenden Bedingung und b) mit der zweiten hinreichenden Bedingung. Lösung: Zunächst bestimmen wir für diese Aufgabe die nötigen Ableitungen: \$f'(x)=3x^2-6x\$ und \$f''(x)=6x-6\$. Für beide hinreichenden Bedinungen benötigen wir die Stellen, an denen \$f'(x)=0\$ ist, also setzen wir an: \$3x^2-6x=0\$ Ausklammern von x liefert: \$x*(3x-6)=0\$ Mit Hilfe des Satzes des Nullprodukts sieht man, dass eine Nullstelle von \$f\$ an der Stelle \$x_1=0\$ vorliegt. Die zweite Möglichkeit, dass die erste Ableitung 0 wird, liegt vor, wenn \$3x-6=0\$, also wenn \$x_2=2\$ ist. Lokale Extrempunkte: Notwendige und hinreichende Bedingung - Herr Fuchs. Somit sind \$x_1=0\$ und \$x_2=2\$ Kandidaten für Extremstellen von \$f\$. Nun überprüfen wir mit den hinreichenden Bedingungen, ob hier tatsächlich Extremstellen vorliegen: Zu a) Wir überprüfen die \$f'\$ auf Vorzeichenwechsel an den Stellen \$x_1\$=0 und \$x_2\$=2 mit Hilfe einer Tabelle: 2 3 9 -3 Somit liegt bei \$x_1=0\$ ein Vorzeichenwechsel von + nach - vor, also weist f an dieser Stelle ein Maximum auf (links davon steigt der Graph, rechts davon fällt er).

Lokale Extremstellen

Es handelt sich um einen Hochpunkt, wenn die Stelle eine negative Zahl ergibt und einen Tiefpunkt, wenn die Stelle eine positive Zahl ergibt. Wir bilden die zweite Ableitung und überprüfen die zwei Stellen: Wir setzen die Stellen in die Funktion en und erhalten für den Hochpunkt H(– 2|6) und für den Tiefpunkt T(4|– 6).

Dies wird umso extremer, je höher der Grad der Funktion wird (x^6, x^8,..., x^2n). Bsp. y=x^8 26. 2011, 15:38 Das mag ja sein, das ändert aber nichts daran, daß im Nullpunkt ein lokales Minimum ist. 26. 2011, 15:42 Original von klarsoweit Wer sagt das? Das würde ich gern exakt bewiesen haben! 26. 2011, 15:52 Es ist f(0)=0 und f(x) > 0 für alle x ungleich Null. Quasi ein Einzeiler. 26. 2011, 16:05 ist das so einfach...

[email protected]