Satz Von Bayes Rechner New York

July 5, 2024, 12:09 pm

96\) \(\mathbb{P}(A|\bar{F}) = 0. 01\) Zusätzlich ist bekannt, dass 0, 01% aller im Umlauf befindlichen Geldscheine Fälschungen sind. Das heißt: \(\mathbb{P}(F) = 0. 0001\) Aufgaben dieser Art lassen sich mit dem Satz von Bayes lösen, da \(\mathbb{P}(A|F)\) gegeben, aber \(\mathbb{P}(F|A)\) gesucht ist. Wir starten also mit der Formel von Bayes (adaptiert mit den Buchstaben für unsere Ereignisse): \[ \mathbb{P}(F|A) = \frac{\mathbb{P}(A|F) \cdot\mathbb{P}(F)}{\mathbb{P}(A)} \] Die beiden Faktoren im Zähler sind in der Aufgabe gegeben, wir können sie also einfach einsetzen: \(\mathbb{P}(A|F) = 0. Satz von bayes rechner der. 96\) und \(\mathbb{P}(F) = 0. 0001\). Im Nenner fehlt uns noch \(\mathbb{P}(A)\), die nicht-bedingte Wahrscheinlichkeit, dass die Maschine Alarm schlägt. Diese Wahrscheinlichkeit ist nicht gegeben, aber wir haben die beiden bedingten Wahrscheinlichkeiten, dass die Maschine Alarm schlägt, gegeben der Geldschein ist echt bzw. falsch. Wir können \(\mathbb{P}(A)\) also mit dem Satz der totalen Wahrscheinlichkeit berechnen: \[ \begin{align*}\mathbb{P}(A) &=\mathbb{P}(A|F)\cdot \mathbb{P}(F) +\mathbb{P}(A|\bar{F})\cdot \mathbb{P}(\bar{F}) \\ &= 0.

Satz Von Bayes Rechner

006\) \(\mathbb{P}(J) = 0. 51\) \(\mathbb{P}(\bar{J}) = 0. 49\) Die gesuchte Wahrscheinlichkeit \(\mathbb{P}(J|B)\) erhalten wir wieder über den Satz von Bayes: \[ \mathbb{P}(J|B) = \frac{\mathbb{P}(B|J) \cdot\mathbb{P}(J)}{\mathbb{P}(B)} \] Bis auf \(\mathbb{P}(B)\) können wir alle Werte direkt einsetzen. Für \(\mathbb{P}(B)\) verwenden wir den Satz der totalen Wahrscheinlichkeit: \[ \mathbb{P}(B) =\mathbb{P}(B|J) \cdot \mathbb{P}(J) +\mathbb{P}(B|\bar{J}) \cdot \mathbb{P}(\bar{J}) = 0. 09 \cdot 0. 51 + 0. Satz von Bayes: Beispiel und Anwendung | NOVUSTAT. 006 \cdot 0. 49 = 0. 04884 \] Damit erhalten wir die gesuchte Wahrscheinlichkeit: \[ \mathbb{P}(J|B) = \frac{\mathbb{P}(B|J) \cdot\mathbb{P}(J)}{\mathbb{P}(B)} = \frac{0. 51}{0. 04884} = 0. 9398 \] Das Kind ist also zu etwa 94% ein Junge, wenn man die Information hat, dass es rot-grün-blind ist.

Von diesen werden 3% und somit 299, 7 Personen (9. 990 * 0, 03 = 299, 7) fälschlicherweise als "gesucht" identifiziert. Fälschlicherweise als gesucht identifizierte Personen: 9. 990 * 0, 03 = 299, 7 Richtigerweise als gesucht identifizierte Personen: 10 * 0, 92 = 9, 2 Insgesamt als gesucht identifizierte Personen: 299, 7 + 9, 2 = 308, 9 Verhältnis: 9, 2 / 308, 9 = 0, 02978 Die Wahrscheinlichkeit dafür, dass die Auslösung eines Alarms tatsächlich auf die Entdeckung einer gesuchten Person zurückgeht, liegt trotz der hohen Treffergenauigkeit der Software aufgrund der geringen a priori-Wahrscheinlichkeit des Merkmals "wird gesucht" bei lediglich 2, 9%. Die hier vorgestellten Inhalte und Aufgaben sind Teil der Vorlesung "Grundlagen der Statistik" im berufsbegleitenden Bachelor-Studiengang Betriebswirtschaftslehre an der Hochschule Harz. Satz von bayes rechner 2. Eine vollständige Übersicht aller Inhalte dieser Vorlesung im Wissenschafts-Thurm findet sich hier: Grundlagen der Statistik.

[email protected]