Schlüsselkonzept Wahrscheinlichkeit Statistik Hessen

July 4, 2024, 6:41 am

Q1/2 (Mathematik) - Schlüsselkonzept: Wahrscheinlichkeit - Statistik - YouTube

Schlüsselkonzept Wahrscheinlichkeit Statistik Bw

Addiert man auf der rechten Seite 0 = P ( A ∩ B) − P ( A ∩ B), so folgt ebenso nach Axiom 3 P ( A ∪ B) = P ( A) + ( P ( A ¯ ∩ B) + P ( A ∩ B)) − P ( A ∩ B) = P ( A) + P ( ( A ¯ ∩ B) ∪ ( A ∩ B)) − P ( A ∩ B), da ( A ¯ ∩ B) ∩ ( A ∩ B) = ∅ ist. Wegen ( A ¯ ∩ B) ∪ ( A ∩ B) = B gilt dann: P ( A ∪ B) = P ( A) + P ( B) − P ( A ∩ B) w. z. b. Schlüsselkonzept wahrscheinlichkeit statistik bw. w. Wir betrachten dazu ein Beispiel aus dem Bereich der Glücksspiele. Glücksspiele wurden in der Geschichte der Wahrscheinlichkeitstheorie nicht allein deswegen analysiert, weil sie an sich so wichtig waren, sondern weil man an ihnen das Wesentliche ohne viele Störfaktoren darstellen kann. (BOROVCNIK) Beispiel: Beim Skatspielen erhält Tessa (genau) zehn der 32 Karten. Mit welcher Wahrscheinlichkeit erhält sie vier Buben oder genau drei Damen?

Schlüsselkonzept Wahrscheinlichkeit Statistika

No category Thema: Wahrscheinlichkeit – Statistik: Ein Schlüsselkonzept

Schlüsselkonzept Wahrscheinlichkeit Statistiken Persönliche

Die beiden Ereignisse kannst du dann als Treffe r oder Niete bezeichnen, deren Wahrscheinlichkeiten zusammen gerechnet immer 1 ergeben: p + q = 1. Wenn du dasselbe Bernoulli Experiment mehrere Male hintereinander durchführst, nennst du das eine Bernoulli Kette (Binomialverteilung). Die Wahrscheinlichkeit für k Treffer bei n Durchgängen berechnest du mit der Formel von Bernoulli: Schau dir jetzt gleich ein Beispiel für ein Bernoulli Experiment an. Bernoulli Experiment Beispiele im Video zur Stelle im Video springen (01:01) Achtest du beim Würfeln nur darauf, ob du eine 6 würfelst oder nicht, ist das auch ein Bernoulli Experiment. Schlüsselkonzept wahrscheinlichkeit statistiken persönliche. Es gibt beim Würfeln zwar 6 verschiedene Ergebnisse {1, 2, 3, 4, 5, 6}, du betrachtest aber nur das Ereignis "6" oder "keine 6". Hier wäre das Ereignis "eine 6 würfeln" der Treffer. Die Niete wäre dann "keine 6 würfeln". Du erkennst ein Bernoulli Experiment auch daran, dass die Ereignisse als Ja- und Nein-Fragen formuliert werden können: Hast du eine 6 gewürfelt?
Für unvereinbare Ereignisse reduziert sich der Additionssatz auf die Additivität (Axiom 3) für Wahrscheinlichkeiten: P ( A ∪ B) = P ( A) + P ( B) f ü r A ∩ B = ∅ P ( A ∪ B ∪ C) = P ( A) + P ( B) + P ( C) f ü r A ∩ B = A ∩ C = B ∩ C = ∅ P ( A) = P ( { e 1}) + P ( { e 2}) +... + P ( { e n}) f ü r A = { e 1; e 2;... ; e n} Für unabhängige Ereignisse gilt: P ( A ∪ B) = P ( A) + P ( B) − P ( A) ⋅ P ( B)

5 Ebenen im Raum – Die Punktprobe 6. 6 Orthogonale Vektoren – Skalarprodukt 6. 7 Normalen- und Koordinatengleichung einer Ebene 6. 8 Ebenengleichung umformen – Das Vektorprodukt 6. 9 Ebenen veranschaulichen – Spurpunkte und Spurgeraden 6. 10 Gegenseitige Lage von Ebenen und Geraden 6. 11 Gegenseitige Lage von Ebenen VII Abstände und Winkel 7. 1 Abstand Punkt und Ebene – HNF 7. 2 Abstand Punkt und Gerade 7. 4 Winkel zwischen Vektoren – Skalarprodukt 7. 5 Schnittwinkel 7. 6 Anwendung des Vektorprodukts 7. 7 Spiegelung und Symmetrie VIII Wahrscheinlichkeit 8. 1 Binomialverteilung 8. Schlüsselkonzept wahrscheinlichkeit statistika. 2 Probleme lösen mit der Binomialverteilung 8. 3 Linksseitiger Hypothesentest 8. 4 Rechtsseitiger Hypothesentest Mathe Kursstufe mit GTR I Schlüsselkonzept: Ableitung 1. 1 Wiederholung: Ableitung und Ableitungsfunktion 1. 2 Wiederholung der Ableitungsregeln und höhere Ableitungen 1. 3 Die Bedeutung der zweiten Ableitung 1. 4 Kriterien für Extremstellen 1. 5 Kriterien für Wendestellen GTR – Anwendung in den Kapiteln 1.

[email protected]