Ableitung: Produktregel & Quotientenregel Ganz Einfach Erklärt + Beispiele

July 2, 2024, 8:23 pm
1. Die Produktregel 1. Motivation Die Notwendigkeit der Produktregel ergibt sich aus folgendem Beispiel: Aufgabe: Bilde die Ableitungen von \$f(x)=x^2 * x^3\$ und \$g(x)=x^5\$. Lösung: Beide Funktionen haben die gleiche Ableitung \$f'(x)=g'(x)=5x^4\$, da \$f(x)=x^2*x^3=x^5=g(x)\$, wodurch auch deren Ableitungen identisch sein müssen. Ein häufiger Fehler ist, dass für \$f'(x)=2x * 3x ^2\$ berechnet wird, da die beiden Faktoren \$x^2\$ und \$x^3\$ einzeln abgeleitet werden und das Produkt aus den Ergebnissen gebildet wird. Diese Vorgehensweise ist offensichtlich falsch. Wir werden in diesem Kapitel eine Regel, die sogenannte Produktregel kennenlernen, mit deren Hilfe man die Ableitung von \$f(x)=x^2*x^3\$ direkt berechnen kann. Quotientenregel mit produktregel aufgaben. 1. 2. Herleitung Wir betrachten im folgenden eine Funktion \$p(x)=f(x)*g(x)\$, deren Ableitung \$p'(x)\$ bestimmt werden soll. Bezogen auf obiges Beispiel wäre \$f(x)=x^2\$ und \$g(x)=x^3\$. Wir leiten die Ableitungsregel für ein solches Produkt zweier Funktionen mit Hilfe des Differenzenquotienten her: \${p(x+h)-p(x)}/h={f(x+h)*g(x+h)-f(x)*g(x)}/h\$ Nun verwendet man einen Trick, indem man eine geschickte Null zum Zähler addiert, nämlich \$0=-f(x)*g(x+h)+f(x)*g(x+h)\$ Fügt man diese "Null" in den Zähler ein, so ändert sich dieser vom Wert her nicht.

Quotientenregel Mit Produktregel Aufgaben

Ganz einfach gesagt: Die Differentialrechnung untersucht das Steigungsverhalten von (Funktions)Graphen. So kann man auch die Ableitung auf einen Graphen übertragen, die (1. ) Ableitung einer Funktion bzw. eines Graphen ist deren Steigungsverhalten (also, wie verändert sich der Graph). Der Sinn von Ableitungen ist in der Regel nicht das Lösen von Gleichungen, sondern Funktion bzw. Graphen charakterisieren zu können (z. B. "Extrempunkte (Hoch- oder Tiefpunkt)"). Die 2. Ableitung gibt an, wie "gekrümmt" die Funktion ist. Weiteren Ableitungen sind für die Charakterisierung der Ausgangsfunktion nicht mehr aussagekräftig bzw. Kettenregel produktregel quotientenregel. ohne Bedeutung. Ableitungen werden überall dort verwendet, wo die Änderung einer Größe von der gleichen Größe selbst abhängt. Beispiele: Die Funktion f beschreibt den Ort, dann beschreibt die f´ die Änderung des Ortes und das ist nichts anderes, als die Geschwindigkeit Die Funktion f beschreibt die Größe eine Bevölkerung, dann beschreibt f´deren Änderung und das ist nichts anderes als das Bevölkerungswachstum.

Anschließend multipliziert man im Zähler die Klammer aus und fasst zusammen. Der Nenner wird grundsätzlich nicht umgeformt: $f'(x)=\dfrac{4x^2+8x-2x^2}{(2x+4)^2}=\dfrac{2x^2+8x}{(2x+4)^2} $ $f(x)=\tan(x)=\dfrac{\sin(x)}{\cos(x)}$ Bei diesen doch recht einfachen Ausdrücken kann man direkt in die Quotientenregel einsetzen: $f'(x)=\dfrac{\cos(x)\cdot \cos(x)-\sin(x)\cdot (-\sin(x))}{(\cos(x))^2}=\dfrac{\cos^2(x)+\sin^2(x)}{\cos^2(x)}$ Dabei wurde im Zähler die Kurzschreibweise $\sin^2(x) = (\sin(x))^2$ bzw. $\cos^2(x) = (\cos(x))^2$ verwendet. Nun gibt es zwei Möglichkeiten zur Vereinfachung; beide Ergebnisse finden Sie übrigens in den gängigen Formelsammlungen. Zum einen kann man im Zähler den sogenannten trigonometrischen Pythagoras $\sin^2(x) + \cos^2(x) = 1$ einsetzen und erhält $f'(x)=\dfrac{1}{\cos^2(x)}$. Ableitung - Produkt- und Quotientenregel - Mathematikaufgaben und Übungen | Mathegym. Zum anderen kann man den Bruch in eine Summe von zwei Brüchen aufteilen. Im einen Bruch wird gekürzt, im anderen $\dfrac{\sin(x)}{\cos(x)}$ durch $\tan(x)$ ersetzt, so dass man ein bruchfreies Ergebnis erhält: $f'(x)=\dfrac{\cos^2(x)}{\cos^2(x)}+\dfrac{\sin^2(x)}{\cos^2(x)}=1+\left(\dfrac{\sin(x)}{\cos(x)}\right)^2=1+\tan^2(x)$.

[email protected]